Hsp72 interacts with paxillin and facilitates the reassembly of focal adhesions during recovery from ATP depletion.
نویسندگان
چکیده
The cytoprotective effect of heat stress proteins on epithelial cell detachment, an important cause of acute, ischemic renal failure, was examined after ATP depletion by evaluating focal adhesion complex (FAC) integrity. The intracellular distribution of FAC proteins (paxillin, talin, and vinculin) was assessed by immunohistochemistry before, during, and after exposure of renal epithelial cells to metabolic inhibitors. The resulting ATP depletion caused reversible re-distribution of all three proteins from focal adhesions to the cytosol. Paxillin, a key adaptor protein, was selected as a surrogate marker for FAC integrity in subsequent studies. Prior heat stress increased hsp72, a molecular chaperone, in both the Triton X-100-soluble and -insoluble protein fractions. Compared with ATP depleted control, heat stress significantly decreased paxillin and hsp72 shift from the Triton X-100 soluble to the insoluble protein fraction (an established marker of denaturation and aggregation); increased paxillin-hsp72 interaction detected by co-immunoprecipitation; enhanced paxillin extractability from Triton X-100-insoluble precipitates, increased the reformation of focal adhesions, and improved cell attachment (p < 0.05). To determine whether hsp72 mediates protection afforded by heat stress, cells were infected with adenovirus containing human hsp72 or empty vector. Hsp72 overexpression increased its interaction with paxillin and improved focal adhesion reformation during recovery, mimicking the protective effects of heat stress. These data suggest that hsp72 facilitates the reassembly of focal adhesions and improves cell attachment by reducing paxillin denaturation and increasing its re-solubilization after ATP depletion.
منابع مشابه
Rho controls actin cytoskeletal assembly in renal epithelial cells during ATP depletion and recovery.
Actin cytoskeletal disruption is a hallmark of ischemic injury and ATP depletion in a number of cell types, including renal epithelial cells. We manipulated Rho GTPase signaling by transfection and microinjection in LLC-PK proximal tubule epithelial cells and observed actin cytoskeletal organization following ATP depletion or recovery by confocal microscopy and quantitative image analysis. ATP ...
متن کاملc-Src and HSP72 interact in ATP-depleted renal epithelial cells.
Disruption of cell contact sites during ischemia contributes to the loss of organ function in acute renal failure. Because prior heat stress protects cell contact sites in ATP-depleted renal epithelial cells in vitro, we hypothesized that heat shock protein 72 (HSP72), the major inducible cytoprotectant in mammalian cells, interacts with protein kinases that regulate cell-cell and cell-matrix i...
متن کاملhsp72 inhibits focal adhesion kinase degradation in ATP-depleted renal epithelial cells.
Prior heat stress (HS) or the selective overexpression of hsp72 prevents apoptosis caused by exposure to metabolic inhibitors by protecting the mitochondrial membrane and partially reducing caspase-3 activation. Focal adhesion kinase (FAK), a tyrosine kinase, exhibits anti-apoptotic properties and is a potential target for degradation by caspase-3. This study tested the hypothesis that hsp72 in...
متن کاملPaxillin and Hic-5 Interaction with Vinculin Is Differentially Regulated by Rac1 and RhoA
Cell migration is of paramount importance to organism development and maintenance as well as multiple pathological processes, including cancer metastasis. The RhoGTPases Rac1 and RhoA are indispensable for cell migration as they regulate cell protrusion, cell-extracellular matrix (ECM) interactions and force transduction. However, the consequences of their activity at a molecular level within t...
متن کاملNuclear transport of paxillin depends on focal adhesion dynamics and FAT domains
The nuclear transport of paxillin appears to be crucial for paxillin function but the mechanism of transport remains unclear. Here, we show that the nuclear transport of paxillin is regulated by focal adhesion turnover and the presence of FAT domains. Focal adhesion turnover was controlled using triangular or circular fibronectin islands. Circular islands caused higher focal adhesion turnover a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 279 15 شماره
صفحات -
تاریخ انتشار 2004